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A theoretical approach is proposed to describe the behaviour of stretched soluble conjugated polymers. 
Flexible, lightly doped chains are subjected either to a static field or to a pure longitudinal flow. In both 
cases, the rigid portions of the chain that contain electrons (conformons) are not dramatically altered. While 
many-electron conformons tend to break in small portions of low charge density, the optimum length of 
short one-electron segments increases slightly. 
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I N T R O D U C T I O N  

The statistical structure of soluble conjugated polymers 
is complex: n-electron delocalization enhances chain 
rigidity and favours planar configurations, whereas 
random motions of the chain backbone occurring in 
solution tend to limit conjugation and conformational 
order. The characterization of this structure has recently 
received great attention since these systems are of 
potential interest for the processing of high conducting 
polymers. Several models have been proposed to describe 
conformational and electronic properties of these 
systems 1-4 but, until now, calculations have dealt mostly 
with polymer chains in the undeformed state, i.e. in the 
absence of an external perturbating field. The aim of this 
study is to describe the behaviour of conjugated chains 
under mechanical deformation. The stretched state is 
obtained either by applying a pulling force at both chain 
extremities or by subjecting the dilute solution to a pure 
elongational flow. In the latter case, it has been known 
for many years that flexible saturated chains undergo coil- 
stretched transition under high velocity gradients s- l l  

In this paper, we shall follow closely the theoretical 
framework developed by Pincus, Cates and Rossi de- 
scribed in Reference 1 and use their notation. Their model 
suggests that each additional electron is associated with 
a local rigid region of the chain (conformon) which is, 
in many respects, similar to the polaron of standard solid 
state physics. Recent numerical calculations have shown 
evidence of the existence of conformons and have given 
a quantitative description of a number of their statistical 
properties12. 

Here, we deal with lightly doped chains in dilute 
solution; we study the modification of the chain rigidity 
and the evolution of various conformon properties 
(average length, average number of confined electrons, 
effective interaction between electrons) with stretching. 
At this stage we emphasize that our discussion is 
essentially qualitative. 

The main features of our theoretical framework are 
reiterated below. Then we consider a static extensional 
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force field applied to lightly doped chains; we first analyse 
the simple situation of an ideal Gaussian chain and then 
examine how predictions are modified when excluded 
volume interactions are introduced. We then study the 
behaviour of a chain subjected to a pure longitudinal 
flow in the presence of a high velocity gradient. 

TH EO RETICA L F R A M E W O R K  

When solubilized in a good solvent a chain undergoes 
fluctuations of large amplitude. Random rotational 
motions occur along the backbone, leading to an 
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Figure 1 Examples of soluble conjugated polymers; t is the transler 
integral between neighbouring platelets 
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alteration of the ordered planar structure characteristic 
of the chain conformation in solid state. Therefore, the 
probability for a n-electron to hop from one unit cell to 
the next is modified: hopping constants depend on the 
relative orientation of the lobes of the Pz atomic orbitals. 
The resulting coupling between the electronic structure 
and the configurational degrees of freedom in the chain 
is treated according to the model proposed in Reference 
1: the hopping constant between two adjacent unit cells 
(see Figure I) has the usual t cos2 t~ form, where t is 
the transfer integral and ~b is the rotational angle between 
the two cells 4. It is assumed that, to a first approximation, 
the lobes of the Pz orbitals are perpendicular to the planes 
defined by the two platelets. 

Electronic energy 
The electronic Hamiltonian is obtained from the 

standard tight binding approximation. For simplicity, we 
work with spinless electrons and consider the very simple 
case where the hopping constants are either equal to 0 
or 1 (i.e. cos 2 ~b = 1 or 0). Therefore, the electronic energy 
of a rigid segment composed of I unit cells and containing 
r electrons is 

Uz_~(t/6) ~ i  r(r+l)(2r+l) (1) 

where the harmonic approximation has been used in 
order to linearize U~ (Reference 1). 

Configurational entropy 
When a rigid segment of I monomers is created in the 

chain, the rotational degrees of freedom, associated with 
the l - 1  corresponding angles ~b, become frozen. The 
resulting cost of configurational entropy can be written 
as AS~ = lfl. The constant fl is the entropy lost per unit 
cell when a platelet is forced to be aligned with the 
preceding platelet, fl depends on the local chain structure 
within the size scale of a monomer. More precisely, as 
most soluble conjugated polymers contain large side- 
groups, fl is introduced to account for ordering effects 
arising from all possible sidegroup interactions. 

Statistical properties of conformons 
Minimizing the free energy of the rigid segment, 

F~ = Uz + kT AS~ one obtains the optimum length for the 
conformon 4: 

l*(r).,, l~(r + ½) (2) 

where I¢ = (2rr2t/3flkT) 1/3. 

The statistical structure of the polymer can be investi- 
gated by representing the chain as a succession of random 
coil segments and conformons: at a given electronic 
concentration, one can derive, for example, the average 
number of conformons per chain and the conformon 
charge. At a low electronic concentration c, where c is 
less than the statistical weight for creating a conformon, 
only small one-electron conformons exist, while at high 
electronic concentrations, large conformons containing 
many electrons are more stable. In other words, an 
effective attraction between electrons originating in the 
configurational disorder of the chain skeleton is observed. 

ELONGATIONAL FORCE: UNIAXIAL 
STRETCHING 

When one applies a pulling force f at both ends of 
a Gaussian chain, the resulting stretching affects the 
statistical structure. To describe these effects, we calculate 
the partition function for small elongation ((r)<<Na or 
f<< T/a, where a is the length of the polymer structural 
unit and N is the number of units of the chain): 

/ 3 "~ 3/2 
Zf=~ 2 ~ a 2 )  fo exp(-3r2/2Na2)exp(f'r/kT)4zcr2 dr 

(3) 
where a is the monomer length and N the degree of 
polymerization (we consider a freely jointed chain). The 
reduction of configurational entropy upon stretching is 
obtained from equation (3): 

ASf - ~(kT log Zf) f2Na2 
t3T fl 6(kT)2 (4) 

where the constant fl introduced in formula (4) has been 
added to take into account the local geometry of the 
chain. 

As the total chain entropy decreases upon deformation, 
the cost of entropy per monomer for creating a stiff 
segment in a stretched chain is also reduced. Per 
m o n o m e r ,  ASI ,  f is given by 

ASt,f = fl{ 1 - f 2aE/6(k T )2} l (5) 

The approach detailed in the previous section is valid 
for stretched chains, provided fl is replaced by i f =  
fl{1-f2a2/6(kT)2}. One can have a clear idea of the 
chain behaviour under stretching by expressing fl' as a 
function of the mechanical deformation. For a Gaussian 
chain, the relative average elongation under a force f is 
( r )= fR2 /3T  where Ro=N1/2a is the size of the un- 
deformed chain. We define the relative elongation ratio 
2 = (r)/R o and the deformation ratio in the direction of 
elongation, x, o~2=(x2)/x 2. In the Gaussian approxi- 
mation t~ 2 -~- 3)~ 2 + 1. 

The optimum length for a stiff segment containing r 
electrons is then 

l*(r) = l*(r)(1 - 322/2N)- 1/3 (6) 

and the conformon length per electron is 

Ic,t = lc(1 -- 322/2N)- 1/3 (7) 

These two equations tell us that the deformation has a 
very small effect on the conformon length: for fairly large 
elongation ratios (2 ~ 10) and N > 500, one has Al*/l* << 
10%. For smaller values of N, 2 ~ 1 0  corresponds to a 
fully stretched chain. In this case, the chain is in rod 
conformation and has an infinite conjugation length. The 
conformon concept then becomes meaningless since the 
electronic structure can be described in the standard solid 
state framework. It should be emphasized that conjugated 
polymers in solution usually have a rather long persistence 
length (e.g. > 20 monomers for polythiophene). Then the 
polymer structural unit, which is the unit step for the 
Gaussian chain, contains many monomers and conse- 
quently the total number of unit steps N may be fairly 
small, of the order of 100 for instance. 

The free energy f f  needed to create a new conformon is 
f f "~ (3/4 )fl1~(1 - 3 ~ , 2 / 2 N )  2/3. As might naively be expected, 
less energy is required to create a conformon in a 
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stretched chain since its structure is more ordered. 
Following the model developed in Reference 1 we 
consider various doping levels; we define the overlap 
concentration of conformons c* = 1/lc,f and the statistical 
weight for creating a conformon a f = e x p ( - f f / k T )  (we 
denote by c* and a the corresponding values in the 
relaxed state). Equations (6) and (7) yield 

c* = c*(1 - 3~2/2N) 1/3, c~ <~ c* (8) 

af = a "  - ~23/2m2'3, af/> a (9) 

We are now able to examine the modification of the chain 
structure as a function of the stretching ratio and the 
electronic density along the chain, c, where c = n/N and 
n is the number of electrons in the chain. According to 
the predictions of Reference 1, when c<< a, undeformed 
chains contain only one-electron conformons of size l~. 
At small elongation, conformons are slightly longer since 
l~,e > I¢. For  stretching ratios large enough that c > c* (i.e. 
322/2N> 1-(c/c*)3),  one-electron conformons become 
so long that /c,f>C-1: the electronic concentration is 
beyond c~, Conformons overlap and, consequently, the 
polymer becomes stiff. 

When c >> a, one has, for small elongation, c >> ae. Then 
the number of conformons, pf=N(afc)  ~/2, slightly 
increases while the average number of electrons per 
conformon, ~ ( c / f f f )  1 / 2 ,  decreases. 

Starting from l*(r) in the undeformed state, the typical 
conformon length l~(r) decreases as large elongation 
ratios are reached. Eventually, all initial conformons can 
break into one-electron conformons when 2 is large 
enough that c < af. At very large elongational forces, the 
chain is stiff and complete electronic delocalization is 
achieved along the chain backbone. 

Let us now turn towards the case of a single chain 
with excluded volume. Configurational entropy is smaller 
than in the ideal situation since only self-avoiding 
configurations are allowed. For  large N the entropy per 
monomer is constant. The entropy loss for a one- 
monomer rigid segment can be written AS~ .... ~vo~=Y/, 
where y is a constant that accounts for the additional 
loss of configurations due to excluded volume effects. 

Considering now the self-avoiding chain subjected to 
an elongation R, the reduction of entropy due to 
stretching is AS(R)= log w(R), where w(R) is the distri- 
bution function of end-to-end chain vectors. For  small 
stretching ratios R << RE, the distribution function scales I 3 
as w(R) = (R/RF) 1/3. Then the entropy per monomer has 
the form AS(R),-, ( l /N) log  N, which can be neglected 
when N >> 1 : statistical properties of conformons are not 
significantly affected under weak stretching. 

For  large deformations, the distribution function has the 
asymptotic behaviour 13, w ( R )  = exp{ - (R/Rv)5/2}. Then 
the entropy per monomer is AS(R)=- (1 /N) (R/RF)  5/2 
and the corresponding loss of entropy in our rigid 
segment is fl ' l(1-25/2/N). This yields an optimum 
conformon length 

/e~xcl vol,f __ lexclvol(1 __ t ~ 5 / 2 1 N  ) - 1/3 ( 1 0 )  

This result shows that conformon properties predicted 
for ideal chains are not strongly altered by excluded 
volume effects: l*xa.ol,f and l~' have formal identical forms. 
At high deformation, one finds 5/2 for the 2 exponent, 
while it was only 2 for the ideal case: the distribution of 
conformon lengths for self-avoiding chains is slightly 
more sensitive to elongational effects. Yet these effects 

remain very small as long as the chain is not fully 
stretched. 

STRETCHING U N D E R  L O N G I T U D I N A L  
F L O W  

We now discuss the case of a simple conjugated chain 
in an extensional flow. Pure elongational flows have an 
interesting property: frictional forces derive from a 
potential and so the deformation can be studied by 
equilibrium theories. Furthermore,  in extensional flows, 
flexible chains are known to exhibit sharp coil-stretched 
transitions under high longitudinal velocity gradients. 
We consider here a one-dimensional longitudinal velocity 
gradient v(r.)= sx,u. The term r, is the position of the 
nth monomer and s is the velocity gradient along the x 
direction. Neglecting hydrodynamics interactions and 
excluded volume effects, the total force experienced by 
each monomer is the sum of the elastic force (Rouse 
contribution) and hydrodynamics friction forces: 

f ,  = (3k T/a 2) 8a,/Sn + s~x,i (11 ) 

with 

a n ~ - r n +  l - - r  n 

Following the approach described in Reference 8 we can 
obtain the associated potential energy V and the entropy 
reduction due to the deformation. V can be simply written 
a s  

V= (3k T/2a 2) ~, (a2. -/~x.2) = (2Nk T/4a 2) ~ (i2r~ -- I~X 2) 
n i 

(12) 
Here p = sz/3N 2 where z-  1 = T/~(Na)2 is the characteristic 
Rouse relaxation time for chain deformation (proportional 
to N2). The second term is obtained from a 'Fourier 
transform' where i=pn /N,  p = l , 2  . . . . .  N. Then the 
partition function is 

i = n /N 
x ,y ,2  

The free energy is 

(13) 

AF = k T/2 ~ log(1 - #/i 2) ,,~ k T/2 log(1 - i~NE/n 2) 
i 

By denoting the critical velocity gradient for which AF 
diverges by s c = 3z/n, the loss of entropy due to the chain 
deformation is 

AS= - ~ l o g  1 -  (14) 
2 sc (1 -s/sc) ~ 

where the geometrical constant fl has been added as in 
equation (4). The corresponding entropy loss for a one- 
monomer rigid segment is then 

ASI, s = ill(1 - (log u - 1 + u - 1 ) 

where 1 - s/s¢ = u. We express l* as a function of the chain 
elongation ratio. To a first approximation, transverse 
dimensions are essentially unchanged in the Gaussian 
regime, while the parallel dimension, (x  2) = (NaE/3)u - 1, 
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exhibits a divergence when u tends to 0. This yields 
( x 2 ) / ( x ~ ) = ~ 2 = 3 2 2 + l = u  -1. Then, minimizing the 
free energy, one finds for the opt imum conformon length 

l* = 1"[1 - (2Nu)-  x] - 1/3 
(15) 

l* ,-~/*[1 - 322/2N] - 1/3 

where the term N - 1  has been neglected in the second 
expression. This equation is identical to equation (6), 
obtained in the case of a static stretching force: all results 
obtained in the previous section can be directly applied 
to the case of a longitudinal flow. Therefore, no drastic 
change of the statistical properties of the conformons is 
expected until the chain undergoes the stretched-coil 
transition. 

S U M M A R Y  

In this paper,  we have discussed in a very simplified way 
statistical properties of conformons in an elongated 
conjugated chain in solution. Large approximations have 
been made, which require that our conclusions be 
compared with experimental results. Such results are not 
yet available. We have considered Gaussian chains where 
electrons had been added to an otherwise empty band. 
Statistical structures of a chain under an extensional 
static force and, in a more realistic situation, under 
longitudinal flow are similar. For  incompletely stretched 
chains, statistical properties of conformons are hardly 
modified. The effective attraction between electrons 

which favours many-electron conformons decreases while 
the length of one-electron conformons increases due to 
a longer conjugation length. 
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